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Abstract. Volcanic eruptions pose an ever-present threat to human populations around the globe, but many active volcanoes 

remain poorly monitored. In regions where ground-based monitoring is present the effects of volcanic eruptions can be 

moderated through observational alerts to both local populations and service providers such as air traffic control. However, in 10 

regions where volcano monitoring is limited satellite-based remote sensing provides a global data source that can be utilised 

to provide near real time identification of volcanic activity. This paper details the development of an automated volcanic plume 

detection method utilizing daily, global observations of sulphur dioxide (SO2) by the Ozone Monitoring Instrument (OMI) on 

NASA’s Aura satellite. Following identification and classification of known volcanic eruptions in 2005-2009, the OMI SO2 

data are analysed using a logistic regression analysis which permits the identification of volcanic events with an overall 15 

accuracy of over 80%, and consistent plume identification when the volcanic plume SO2 loading exceeds ~400 tons.  The 

accuracy and minimal user input requirements of the developed procedure provide a basis for the creation of an automated 

SO2 alert system providing volcanic alerts in regions where ground based volcano monitoring capabilities are limited. The 

technique could easily be adapted for use with satellite measurements of volcanic SO2 emissions from other platforms. 

1 Introduction 20 

Volcanic eruptions pose a global hazard due to the potential for emissions to be entrained into the upper atmosphere and 

transported globally. The addition of these particles can result in significant impacts locally as fine particulate matter in the 

atmosphere can cause significant health problems (Delmelle et al., 2002, Hansell & Oppenheimer, 2004) and impacts to the 

aviation industry (Miller & Casadevall, 1999; Prata, 2009) in addition to alterations to the radiative transfer rates through the 

atmosphere on a global scale as seen following the eruption of Mt Pinatubo (Self et al., 1993), in order to mitigate the possible 25 

impacts of volcanic eruptions timely warning of events are essential. The installation of a global network of ground-based 

monitoring stations would be both costly and impractical however satellite-based monitoring provides the spatial and temporal 

coverage necessary to facilitate the near-real time (NRT) monitoring of global volcanism (Brenot et al., 2014). Existing 

techniques employ a threshold approach in order to identify volcanic eruptions however this limits the capabilities in regards 

to smaller events and can be susceptible to the effect of high background noise levels. The following work outlines a method 30 
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for the identification of volcanic plumes utilising a background correction factor. The resulting output was processed with a 

binary classification algorithm in order to identify the strength of the developed methodology to distinguish volcano events 

from control samples. 

The Ozone Monitoring Instrument (OMI), launched on NASA’s Aura satellite in July 2004, provides near global daily 

monitoring of multiple atmospheric trace gases with absorption bands in the ultraviolet (UV) spectral band, and was designed 5 

to supersede the Total Ozone Monitoring Spectrometer (TOMS) instrument. Due to its strong absorption bands in the UV, 

sulphur dioxide (SO2) can be discerned by instruments designed to measure ozone (Krueger, 1983). The ability of satellite-

based ozone monitoring instrumentation to detect and monitor volcanic SO2 emissions was first demonstrated by the 

identification of the eruption plume of El Chichón in 1982 (Krueger, 1983), which led to the implementation of satellite based 

UV measurements as a volcano monitoring tool (Schneider et al., 1999; Krueger et al., 2008). The low spatial resolution of the 10 

TOMS instruments precluded the measurement of SO2 in all but the largest volcanic eruptions (Carn et al., 2003), but OMI’s 

higher spatial resolution (13 x 24 km at nadir) permits detection of smaller eruptions and passive volcanic degassing of SO2, 

whilst providing daily global coverage (Krotkov et al., 2006; Carn et al., 2013, 2016). This work utilises the continuous global 

coverage of OMI to identify and automatically classify volcanic eruption events based on common characteristics.  

1.1 Existing alert systems 15 

An operational alert system known as the Support to Aviation Control Service (SACS) is currently employed in the assessment 

of SO2 and ash emitted from volcanoes (Brenot et al., 2012). This service provides near real time (NRT) alerts of anomalously 

high SO2 amounts and ash indices recorded by three UV instruments; OMI and Global Ozone Monitoring Experiment-2 

(GOME-2; maintained on-board two meteorological satellites MetOp-A and MetOp-B) and three infrared (IR) instruments; 

the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI; also flown on the MetOp-20 

A and B platforms). The method of SO2 alert generation used by SACS (Brenot et al. 2014; 

http://sacs.aeronomie.be/info/index.php) involves the initial identification of an anomalously high SO2 column amount (>2 

DU). When a pixel is flagged the area is analysed in greater detail and an alert is only generated if more than half of the 

neighbouring pixels also display high SO2 values (>2 DU). The technique developed by Brenot et al. (2014) is subject to 

certain limitations when utilising UV data including; the systematic noise in the data leading to false alerts and the restriction 25 

of retrievals to those that assume a SO2 plume altitude in the lower stratosphere (STL). Therefore, in the development of an 

algorithm based on OMI data we aim to account for variable background SO2 levels and systematic noise, in addition to using 

SO2 retrievals assuming a lower plume altitude in an attempt to resolve plumes with lower SO2 amounts, lower injection 

altitude and more diffuse characteristics.   
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2 Methodology 

2.1 Data collection 

OMI Level 2 total column SO2 (OMSO2) data are publicly available from NASA Goddard Earth Sciences (GES) Data and 

Information Services Center (DISC; http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omso2_v003.shtml). These data 

provide global coverage with a temporal resolution of 1 day at low latitudes and increasing daily observations towards the 5 

poles, where measurement swaths overlap. OMSO2 data currently provide volcanic SO2 total column amounts calculated using 

a linear fit (LF) algorithm (Yang et al., 2007) for three distinct layers of the atmosphere; corresponding to centre of mass 

altitudes (CMA) of approximately 3 km (lower troposphere; TRL), 8 km (mid-troposphere; TRM) and 17 km (lower 

stratosphere; STL). These altitudes are based upon atmospheric pressure levels and therefore can display slight variations 

depending upon the local conditions such as temperature profile (Carn et al., 2013). In order to obtain an accurate estimation 10 

of the SO2 column amount the appropriate retrieval must be selected based upon the known or inferred injection altitude of the 

volcanic plume (Yang et al., 2007), which can be poorly constrained particularly in remote regions with minimal or no 

monitoring capabilities (Sparks, 2012). Differences between the altitude assumed in the LF algorithm and the true altitude of 

the plume can lead to errors of up to 20%, provided the assumption is approximately correct (Yang et al., 2007). Due to the 

focus of this work on a variety of plumes displaying diverse eruptive characteristics, we use SO2 data from the TRL OMSO2 15 

product in order to facilitate identification of eruptions confined to the lower troposphere. The use of one retrieval altitude 

reduces the need for user input or prior knowledge of the injection altitude of the plume however results in the overestimation 

of plume mass for features injected above the retrieval altitude therefore this method is for identification and alert purposes as 

opposed to accurate plume mass calculation. Previous works have provided in depth descriptions of the OMI retrieval 

algorithms (Carn et al., 2013; Krotkov et al., 2006; McCormick et al., 2013; Yang et al., 2007) with a proven track record in 20 

the assessment of volcanic and anthropogenic emissions including identification of volcanic plume sources (e.g., Carn et al., 

2008; McCormick et al., 2012; Carn et al., 2013, 2016; McCormick et al., 2013), volcanic plume tracking (e.g., Carn and Prata 

2010; Krotkov et al., 2010; Lopez et al., 2013) and identification of copper smelter emissions (Carn et al., 2007) and other 

large SO2 emission sources (e.g., Fioletov et al., 2011, 2013). 

OMI data collected since 2008 are influenced by a row anomaly (the OMI row anomaly; ORA) which results in data gaps in 25 

particular rows along the OMI measurement swath. Information on the status of this anomaly is provided by the Royal 

Netherlands Meteorological Institute (www.knmi.nl/omi/). The ORA data gaps combined with the variation in viewing angle 

produced by the 16-day orbital cycle of the Aura satellite results in varying influence on OMI SO2 measurements (Flower et 

al., 2016). Any eruptions identified after the formation of the ORA were investigated with greater scrutiny and excluded where 

the effect was significant. 30 
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2.2 Volcanic plume quantification 

As a test dataset for our plume identification technique, we identified 79 volcanic eruptions at 27 different volcanoes (Table 

1) using the Volcanoes of the World (VOTW) database curated by the Smithsonian Institution’s Global Volcanism Program 

(GVP; http://volcano.si.edu/). Note that, as a result of the way in which eruptions are defined in the VOTW database, several 

of the eruptions listed in Table 1 actually correspond to the onset of extended periods of volcanic activity, rather than discrete 5 

eruptions. For each identified eruption, total SO2 mass detected by OMI was obtained for the registered day of the eruptive 

event (or the start of the period of unrest) with the preceding and subsequent days analysed where no corresponding plume 

could be identified on the reported day of eruption. This allowance accounts for any inaccuracies in the assigned eruption date, 

and allows for the identification of eruption plumes generated after the Aura overpass time (~1345 local time) resulting in a 

delay in detection. Identification and quantification of volcanic SO2 emissions is complicated by the presence of variable biases 10 

and noise levels in the data. These variations are influenced by several factors including the latitude of the volcano, time of 

year, proximity to pollution sources, and the presence of meteorological clouds (Krotkov et al., 2006; Yang et al., 2007). 

 In our analysis, three methods (M1, M2, and M3; Table 1) were used to quantify the SO2 loading detected at each location, 

with the goal of distinguishing volcanic SO2 from background noise. The procedures were developed with the intention of 

allowing the calculation of volcanic SO2 loading with minimal user input, reducing the possible effects of human error in the 15 

classification of what constitutes the bounds of an identified plume. 

Method 1 (M1) and Method (M2) differ only in the geographic extent over which OMI SO2 columns are integrated to obtain 

total SO2 mass (Fig. 1). For each eruption analysed, M1 calculates integrated SO2 mass in a 4°×4° box centred over the volcano 

location (thus capturing plumes regardless of wind direction). The 4°×4° box encompasses an area which captures most small-

moderate volcanic plumes with few instances of dispersion of emissions outside the region; however, this relatively large 20 

sample area also potentially includes increased background noise, which could generate false alerts in locations with higher 

noise levels. As an alternative to M1, M2 uses a 2°×2° region which, whilst more susceptible to possible plume dispersion 

beyond the defined limits, is less influenced by noise contamination (Fig. 1). Manual inspection indicated that plume dispersion 

beyond the defined geographic limits was only an issue for the largest eruptions in Table 2. Figure 1 shows an example of a 

small volcanic SO2 plume at Piton de la Fournaise volcano (Réunion); here, the M2 region captures most of the SO2 plume 25 

that is visually apparent, only excluding some very diffuse SO2 further downwind that is included in the M1 region. 

A third method (M3) was developed in an attempt to intrinsically account for the variable noise levels in SO2 data collected in 

different geographic regions (Carn et al. 2013). We posit that in order to effectively develop a volcanic plume detection 

methodology without a significant number of false alerts a background noise correction may be necessary. Our technique is 

analogous to contextual thermal infrared (TIR) anomaly detection procedures used at active volcanoes, where a background 30 

radiance value is calculated as a reference against which anomalously high radiance values can be compared (e.g., Wright et 

al. 2002; Murphy et al., 2011). In the M3 method, the 2°×2° region (M2) is considered the active emission region with a 

background SO2 offset value derived from the total SO2 mass in the 4°×4° M1 region (Eq. 1). 
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𝑀3 = 𝑀2 −
𝑀1−𝑀2

3
           (1) 

Eruptive events that post-date the appearance of the ORA were manually assessed in order to identify whether the ORA data 

gap significantly impacted the detection of SO2, such as complete masking of the plume in extreme cases (Flower et al., in 

prep). Additional factors impacting the selection of eruptive events are the presence of meteorological clouds, which can 

effectively mask any volcanic plume at lower altitudes from a satellite-based sensor (Carn et al., 2013; Krotkov et al., 2006), 5 

and the seasonal variation in UV radiation at high latitudes. Cloud masking is due to the high UV albedo of clouds and this, 

coupled with low UV irradiance, can make SO2 detection at high latitudes during winter months particularly challenging 

(Telling et al., 2015). Hence the majority of the eruptions analysed here are located at latitudes below 30°. 

2.3 Control samples 

A control group is required to assess whether volcanic eruptions can be distinguished from background SO2 levels. Therefore, 10 

for each volcanic eruption analysed (Table 2) a control SO2 mass was calculated using each of the three incorporated 

methodologies (M1, M2 and M3) for a second date at the same volcano. Assignment of control group analysis dates was 

limited to a period between 1st January 2005 and 31st December 2009. The 2009 cut-off date was employed due to the increasing 

influence of the ORA after this time, in an attempt to reduce the influence of data gaps on the model output. Control dates 

were assigned for comparison with each identified volcanic eruption, using an online random number generator (Haahr, 2015; 15 

http://www. random.org) to assign a value between 0 and 1825 to each data point. These random values were used to determine 

the number days from the beginning of the analysis period at which to assign a control date (Table 2). The identified dates 

were then assigned to each target volcano alphabetically, with a corresponding number of events assigned to each location as 

number of volcanic eruption analyses performed (Table 2).  

2.4 Modelling techniques 20 

Modelling procedures were conducted with the Weka 3 software package; a collection of algorithms that can be implemented 

for data mining tasks (Hall et al., 2009) provided by the University of Waikato (http://www.cs.waikato.ac.nz/ml/weka/). 

Significant differences in measured SO2 mass were found between the samples due to variations in eruption magnitude, 

background noise levels and SO2 emission strength displayed by the incorporated volcanoes preventing the calculation of a 

flat emission threshold for the classification of the eruptive events.  25 

Within the Weka 3 package, a simple logistic regression analysis (Eq. 2) was found to be an effective technique for the 

classification of volcanic and non-volcanic events. Simple logistic regression is a binary classification technique, here defining 

volcanic (v) and non-volcanic control (c) events facilitating the development of a linear model constructed from a transformed 

target variable (Witten & Frank, 2005). The logistic regression equation used here assigns the probability P of the occurrence 

of a volcanic eruption or degassing event; 30 

𝑃 = 1 −
1

1+𝑒−(𝑎+𝑏𝑋)
,           (2) 
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where e is the base of the natural logarithm, a is the probability when the independent variable (X) is equal to zero, and b 

represents the rate at which probabilities vary with incremental changes in X, which in this case is the volcanic plume SO2 

mass measured in tons.  

Output of a logistic regression analysis is assessed against a series of validation statistics that test the accuracy of the generated 

model. These statistics include overall accuracy, precision and recall, in addition to Receiver Operating Characteristic (ROC) 5 

curves. In this analysis, the overall accuracy relates to the percentage of c,orrectly classified events in both the volcanic and 

control (non-volcanic) samples; however, this statistic alone cannot account for preferential classification of one sample over 

another (Oommen et al. 2010). Hence precision and recall statistics, characterised by values between 0 and 1, are incorporated 

in order to identify whether preferential classification is occurring. Precision relates to the accuracy of prediction of a single 

sample group (volcanic or non-volcanic) whilst recall measures the effectiveness of the predictions themselves (Oommen, et 10 

al. 2010). In the context of this study, if a volcanic classification has a precision of 0.9, then 90% of the events predicted as 

being volcanic in nature are volcanic events, whilst the remaining 10% are misclassified as non-volcanic and will be termed 

here as ‘missed alerts’. In contrast, a recall value of 0.8 would correspond to 80% of observed volcanic events being correctly 

classified, but this does not take into account any non-volcanic events which are misclassified as volcanic, referred to here as 

‘false alerts’. The final validation statistic used here is the ROC curve, which represents a method for assessing the rate of 15 

accurately classified events against possible falsely classified events. ROC values relate to the accuracy of the classification 

system implemented with a value of 1 indicating accurate prediction of all events (Oommen et al., 2010; Witten & Frank, 

2005).  

Logistic regression model calculation was conducted using the k-fold cross validation technique incorporated into the Weka 3 

software package. This method segregates the data into k partitions, allowing k-1 folds of the data to be used as a training set 20 

with the remaining data used for validation purposes. This method is then repeated with each of the k partitions being used to 

validate the corresponding model from which it was withheld, with the final statistics comprising an average of the output of 

all k models (Oommen et al. 2010). We implement a k value of 10 due to the associated reduction in bias compared to k values 

<5 (Rodríguez et al., 2010; Witten & Frank, 2005).  

3 Results 25 

3.1 OMI SO2 measurements 

Of the 79 volcanic eruptions analysed, 13 displayed low SO2 amounts (<100 tons), following application of the SO2 correction 

(M3), on the identified day of eruption. Two eruptions produced very large amounts of SO2: Nyamuragira (Nov 2006; 46 kt) 

and Rabaul (Oct 2006; 550 kt), although use of the OMI TRL SO2 columns is likely to overestimate the actual SO2 amounts 

in these upper tropospheric or lower stratospheric plumes (Carn et al., 2013). 30 

Excluding the aforementioned very high values, the average M3 plume contained 680 t SO2, approximately 60% of the average 

of the M2 analysis and 25% of the M1 average (Table 3). The control dataset displays significantly lower SO2 loadings than 
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the volcanic events with an average corrected SO2 mass of 90 t and a maximum corrected SO2 mass of 1040 t. This variation 

indicates that the volcanic data displays generally higher SO2 levels than the control data, as would be expected. In all of the 

selection methodologies the SO2 mass detected on control dates was 14-17% of the average mass detected in the volcanic 

dataset. Box plots were generated to assess the general dynamics of the volcanic and control datasets (Fig. 2). Comparison of 

these plots confirms the pattern identified in Table 3, with the SO2 measurements on ‘eruption’ days displaying significantly 5 

higher values than the control data.  

3.2 Initial review 

Of the three SO2 mass calculation procedures employed (M1, M2 and M3), the most success was achieved with the 

background-corrected dataset (M3). None of the logistic regression model investigations undertaken with the M1 and M2 

datasets produced more than 55% overall accuracy in the classification of volcanic events, and therefore these data were not 10 

investigated further.  However, the M3 technique provided the best results with a 77% overall accuracy, with no additional 

data pre-processing required, therefore this technique was employed for all further assessments and model development.  

3.3 Model output 

The most accurate model consisted of a simple logistic regression applied to the M3 SO2 dataset with an overall accuracy of 

76.6% and an ROC of 0.843. This model favoured volcanic precision (volcanic precision of 0.83 vs control of 0.72) at the 15 

expense of control recall (control recall of 0.86 vs volcanic of 0.67), which indicates that the model preferentially classifies 

alerts as control samples, therefore reducing the number of false alerts generated relative to missed alerts. Investigations were 

undertaken to identify characteristics of volcanic events that facilitated classification and to elucidate the likely cause of the 

23% error associated with the model. 

Removal of volcanic plumes containing less than 50 t SO2 from the M3 dataset resulted in a ~6% increase in model accuracy. 20 

Eight data points produced false alerts with control events classified as volcanic eruptions, whilst 18 volcanic events were 

misclassified as controls, producing missed alerts (Table 4). The misclassified alerts were isolated to assess if any common 

characteristics of these events could be identified, with each individual alerts incorporated into Figure 2 for comparison with 

the overall dynamics of the data. The comparison of missed alerts indicates that each one falls within the lower quartile of the 

volcanic dataset, whilst the false alerts displayed values consistent with the upper quartile of the control data range (with one 25 

exception; Fig. 2). The potential causes of the misclassification of events are discussed further in section 4.1. 
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4 Discussion 

4.1 Analysis of inaccurate classifications 

4.1.1 False alerts 

Investigation of the incorrectly classified false alerts (Fig. 2; Table 4) revealed that, due to the random selection procedure 

used for assigning control sample dates, some of the control SO2 values corresponded to periods of ongoing volcanic activity. 5 

These anomalous control values relate to stronger, persistent plumes, despite not being associated with large or ‘initiating’ 

events as reported in the VOTW database; this was the case for five of the nine false alerts (C1, 8, 32, 54 and 57; Table 4). 

Two additional alerts were generated as a result of a data gap in the OMI measurements (C10 and 24); this indicates that 

missing values (characterised by a blank cell to differentiate these from days with data available but no recordable SO2 

emissions) are likely to be incorrectly classified by the incorporated model as volcanic events and therefore screening of 10 

samples for data gaps prior to incorporation into the model is required to prevent the classification of missing values as volcanic 

events. The one remaining false alert (C29) was the result of increased noise levels preferentially affecting the M2 over the 

M1 region, resulting in an artificially high SO2 mass derived from the M3 calculation and a false alert.  

4.1.2 Missed alerts 

Missed alerts occurred at a higher frequency than false alerts, but a common characteristic of all missed alerts is an SO2 plume 15 

mass below 325 t (Fig. 2; Table 4). We attribute the misclassification of volcanic events to four main causes. The first 

influenced eight of the volcanic events (V3, 13, 20, 23, 28, 32, 33 and 48; Table 4) and is the result of eruptions producing 

diffuse plumes containing low SO2 amounts close to the OMI detection limit (e.g., small eruptions and/or eruptions to low 

altitudes). The second cause of misclassification affecting eight samples (V5, 17, 21, 24, 34, 43, 64 and 67; Table 4) is the 

drifting of the volcanic plume out of the geographic area of analysis (M2) into the region utilised for background classification 20 

(M1), causing signal suppression in the M3 methodology. One event (V19; Table 4) was impacted by increased noise in the 

background classification region, also suppressing the plume SO2 loading in the M3 calculation. The final factor preventing 

the correct identification of a volcanic eruption (V53; Table 4) occurred at Popocatepetl (Mexico), through the masking of a 

moderate eruption plume when a large SO2 cloud from another volcano (Soufriere Hills, Montserrat) drifted into the M1 region 

causing an anomalously high background SO2 mass in the M3 calculation. 25 

4.2 Optimisation of event classification 

We assessed the impact of varying the maximum SO2 plume mass included in the logistic regression model, to investigate 

whether the use of a threshold SO2 loading improved the classification capabilities of the model. The volcanic dataset was 

incrementally filtered to remove a proportion of the data, to identify how this influenced the validation statistics. Each reduced 

volcanic dataset was incorporated into a logistical regression model with a k-fold validation system; however, the control 30 

sample was maintained throughout all of the analyses. The variation in class size produced by the removal of volcanic data 
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actually provides a more accurate representation of the natural system (Oommen et al. 2011), with more control samples than 

volcanic, as more days are characterised by quiescence than volcanic activity. In each instance the overall accuracy, precision 

and recall statistics were tracked (Fig. 3) to assess the changes in the model as the minimum incorporated SO2 mass varied. 

The linear correlation between control recall and volcanic precision is evident in the comparison of these statistics (Fig. 3b) as 

well as that between the control precision and volcanic recall.  5 

When all data are incorporated, the model appears to favour volcanic precision and control recall resulting in a model that will 

display a larger number of missed volcanic alerts than false classification of control samples. When 60% of the dataset is used, 

the volcanic precision and recall are equal as are the control precision and recall, all displaying values greater than 0.9. The 

threshold SO2 loading in this case is 360 tons, i.e., if this model were to be implemented any volcanic plume containing less 

than 360 tons of SO2 would not be identified as a volcanic event. The use of 75% of the volcanic dataset appears to represents 10 

a good compromise between variation in the statistics and the elimination of smaller plumes (Fig. 3). The volcanic and control 

precision are almost equal, indicating that this model is equally effective at predicting volcanic and non-volcanic events 

respectively, with a higher control recall than volcanic recall (Fig. 3) indicating the tendency of the model to miss smaller 

volcanic events rather than falsely classify control samples displaying moderate noise levels as volcanic eruptions. Favouring 

missed over false alerts is a characteristic of the MODVOLC automatic volcanic alert system designed to detect volcanic 15 

thermal anomalies (Wright et al., 2002, 2004). Comparison of these models could not be conducted as assessment of the 

MODVOLC system was performed in a qualitative manner, assessing whether alerts were identified in locations where they 

would be expected (e.g. lava flow fields). 

Figure 4 shows the variation of ROC values associated with each of the logistic regression models and minimum SO2 plume 

mass with the percentage of the total dataset analysed, with the total change in each normalised. The trends in both ROC and 20 

SO2 mass threshold show 2nd order polynomial characteristics with R2 values of 0.985 and 0.993, respectively. The intersection 

of these trend lines represents model optimisation, offering the greatest gain in accuracy (ROC) combined with the least impact 

on the identifiable SO2 plume mass. This optimisation point corresponds to the removal of 22% of the volcanic data, resulting 

in a minimum incorporated SO2 mass of ~150 t and correlates with that inferred through the comparison of precision and recall 

statistics (Fig. 3). Application of a 150 t SO2 mass threshold prevents the resolution of smaller plumes, but the original 25 

assessment (Fig. 2; Table 4) indicates that SO2 loadings below this value tended to be misclassified anyway.  

The model based on 78% of the volcanic dataset has an overall accuracy of 85.7% and an ROC of 0.95, producing 8 false 

alerts that correspond to those identified in the original assessment, with the exception of C8 (Table 4) which was accurately 

classified with this model. In contrast, 27.8% of the missed alerts originally identified were no longer flagged; of these five 

instances, four were eliminated due to their low SO2 loadings with the remaining alert correctly classified as a result of 30 

improvements in event classification by the optimised model.   

Parameterization of Equation 2 using the 78% model output facilitates the validation of individual records and allows the 

incorporation of new data points (Eq. 3) through the substitution of X with measured volcanic SO2 mass in tons: 
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𝑃 = 1 −
1

1+𝑒−(−2.943+0.0091𝑋)
,          (3) 

4.3 Independent validation 

A secondary testing procedure was employed to assess the efficacy of the developed logistic regression models on an 

independent test dataset consisting of 12 volcanic eruptions (Global Volcanism Program, 2013) not initially identified and 

displaying variable plume characteristics, and 12 corresponding control samples resulting in 24 data points (Table 5).  5 

The incorporation of an independent investigation allowed the data characteristics isolated in the original analysis to be tested 

against data not utilised in the training of the model. Classification of the data with the original model containing all data points 

resulted in an accuracy of 75%, whereas analysis with the optimised model (78% of the data) produced an overall accuracy of 

79.2%; a detailed overview of the validation statistics of each model is given in Table 6. The optimised model resulted in no 

false detections although four volcanic events were missed; these consisted of one sample in which the SO2 plume had drifted 10 

out of the analysis area (Soufriere Hills), two weak plumes with SO2 loadings below 60 tons (Cleveland & Lascar) and one 

moderate plume with SO2 loadings of 255 t (Colima).  All SO2 plumes exceeding 390 t were correctly classified as volcanic, 

therefore we conclude that events emitting less than 390 t SO2 are likely to be misclassified with this methodology. Taking 

into account the thresholds of the incorporated methods (Table 6) and solving Eq. 3, we find that the minimum SO2 mass that 

would be classified as volcanic in origin by this model is 378 t.   15 

4.4 Limitation 

This analysis has indicated that prior to implementation of the incorporated classification technique (logistic regression), pre-

screening of data samples is required to account for the influence of missing data points and meteorological cloud cover. The 

incorporated modelling technique automatically interpreted missing values as volcanic alerts subsequently influencing the alert 

threshold and therefore data gaps must be removed prior to linear regression analysis. Persistent meteorological cloud cover 20 

can mask SO2 plumes at lower altitudes from satellite sensors, precluding detection. This effect can be significant at higher 

latitudes, particularly in winter, and therefore the methodology described here may be limited in these locations. Where high 

latitude data were available and incorporated into this trial (Bezymianny, Okmok and Cleveland) correct classification occurred 

in all but one of those days where data was available (one additional control sample characterised by no available data was 

misclassified) indicating the robust nature of the M3 pre-processing technique employed, however further investigation is 25 

required to accurately assess the capabilities in high latitude regions particularly regarding the influence of persistent cloud 

cover.  

The main constraint on SO2 plume detection using this methodology is the detection limit of the satellite measurements used 

as input (here, the OMI TRL SO2 columns). Indeed, this analysis indicates that the minimum SO2 mass that could be reliably 

classified as volcanic in origin using the OMI TRL SO2 data is on the order of 400 tons. The lack of a-priori knowledge of 30 

volcanic SO2 plume altitude restricts the classification technique to SO2 retrievals corresponding to a single CMA, and our use 
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of the TRL SO2 product does not imply any knowledge of SO2 altitude (which is not required for eruption detection). However, 

the use of OMI SO2 products with lower noise (e.g., STL columns) or more sensitive SO2 algorithms (e.g., Li et al., 2013) 

should result in lower detection limits. Furthermore, future UV satellite instruments such as the Tropospheric Monitoring 

Instrument (TROPOMI; http://www.tropomi.eu/), with better spatial resolution than OMI, should also have lower SO2 

detection limits. Another limitation of this methodology relates to issues in the original data, in particular those restricting the 5 

minimum plume that can be resolved. This factor is related to the spatial resolution of the original data which cannot be 

overcome through processing techniques. In order to resolve smaller plumes an instrument with a higher spatial resolution 

would be required however existing higher resolution instruments sacrifice temporal resolution in order to facilitate the 

identification of small features and therefore do not provide the daily coverage necessary in the creation of a global near real 

time alert system. 10 

5 Conclusion 

Through the analysis of operational OMI SO2 measurements (TRL SO2 columns) for 79 volcanic eruptions, a simple logistic 

regression model allowed classification of volcanic from non-volcanic control events with an accuracy of 80%. Optimisation 

of the model by progressive removal of input data enabled volcanic plumes containing at least 400 tons of SO2 to be 

consistently resolved and correctly classified. With an appropriate training dataset, this technique could form the basis of a 15 

near real-time volcanic eruption detection scheme, with minimal user input necessary. Individual assessment of specific 

regions could provide more accurate plume classification, however this would require a significant number of eruptions to 

facilitate training of the data and therefore would only be feasible where persistently degassing volcanoes are present such as 

Vanuatu or Indonesia. 

We identified some common factors resulting in misclassification of control or volcanic events, including; contamination of 20 

the background analysis region with SO2 emissions from a separate volcano; low SO2 emissions and/or low plume altitude 

(i.e., resulting in emissions below detection limits); advection of SO2 emissions out of the analysis region prior to the satellite 

overpass; and data gaps.  

The implementation of a NRT volcanic eruption alert system based on the technique described here would represent an advance 

over current systems, such as SACS, which use a simple threshold SO2 column amount to identify significant volcanic 25 

degassing events (Brenot et al, 2014). In dispersed volcanic clouds, SO2 column amounts may be low yet the total SO2 loading 

could be high; hence alerts based on SO2 mass rather than column amount may be more effective in certain situations. However, 

techniques based on a threshold SO2 column amount would be more effective at identifying drifting volcanic clouds far from 

the source, since a reference background region is not required and elevated SO2 amounts may be detected regardless of 

location. Hence some combination of both approaches would likely yield an optimal NRT volcanic cloud detection system. 30 

For example, drifting volcanic clouds could be located based on elevated SO2 column amounts, with SO2 loading then 

quantified using the approach described here. 
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Data availability 

OMI Level 2 total column SO2 (OMSO2) data are publicly available from NASA Goddard Earth Sciences (GES) Data and 

Information Services Center (DISC; http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omso2_v003.shtml). The OMI 

processing code used to analyse this data (OMIplot) is available from the Vhub website (https://vhub.org/resources/682). 
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Table 1: Characteristics of the methods incorporated in the development of an automatic classification technique 

Method Sample area size Position Correction technique 

M1 4°×4° 
Centred over the 

volcano 
None applied 

M2 2°×2° 
Centred over the 

volcano 
None applied 

M3 2°×2° 
Centred over the 

volcano 

Assumes that the plume is predominantly confined to the 

M2 region and utilises the M1 region to define the 

background SO2 level (Eq. 1).  
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Table 2: Test dataset of volcanic eruption dates and control dates (organized alphabetically by volcano)  

Volcano Location 
Eruption 

Date 

Control 

Date 

Ambrym  Vanuatu 

 

08/11/2006 31/03/2005 

23/05/2008 04/06/2008 

Anatahan  

  

Mariana Islands 

 

06/01/2005 11/05/2009 

05/04/2005 16/06/2006 

17/03/2006 15/01/2007 

24/02/2007 22/11/2005 

27/11/2007 29/06/2005 

Bagana  

  

Papua New Guinea 

 

17/03/2005 26/11/2007 

06/06/2005 14/06/2008 

09/01/2007 25/04/2005 

10/03/2007 23/10/2006 

20/05/2007 06/11/2006 

14/07/2007 01/07/2009 

23/08/2007 22/01/2006 

12/09/2007 26/12/2009 

06/10/2007 01/03/2009 

Bezymianny  

 

Kamchatka, Russia 

 

10/05/2007 31/01/2005 

11/07/2008 22/05/2008 

Chaitén  Chile 02/05/2008 11/12/2009 

Dukono  Indonesia 

 

25/05/2008 03/03/2006 

25/07/2008 02/10/2008 

Fuego  Guatemala 27/12/2005 03/04/2008 

Ibu  Indonesia 04/04/2008 16/07/2008 

Kathala  

  

Comoros 

 

16/04/2005 07/07/2005 

24/11/2005 12/09/2006 

28/05/2006 17/10/2008 

12/01/2007 24/05/2009 

Kelut  Indonesia 18/05/2006 21/02/2006 

Manam  

  

Papua New Guinea 

 

27/01/2005 15/07/2005 

17/07/2006 25/02/2005 

05/10/2007 24/11/2008 

29/12/2007 07/08/2005 

11/05/2008 04/07/2008 

Mayon  

 

Philippines 

 

17/08/2005 02/08/2006 

21/02/2006 27/03/2008 

Merapi  

 

Indonesia 

 

07/03/2006 29/05/2008 

11/03/2006 31/03/2007 
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Nyamuragira  

  

DR Congo 

 

27/11/2006 09/12/2007 

02/01/2010 11/05/2009 

06/11/2011 03/09/2008 

22/06/2014 31/08/2008 

Nyiragongo  

  

DR Congo 

 

07/09/2005 22/06/2006 

10/10/2005 27/08/2005 

07/11/2005 08/03/2007 

01/01/2009 09/05/2009 

Ol Doinyo Lengai  Tanzania 

 

20/07/2005 20/07/2005 

30/03/2006 11/03/2008 

Pagan  Mariana Islands 11/01/2007 24/06/2007 

Piton de la Fournaise  

  

Réunion  24/02/2005 01/02/2006 

20/07/2006 22/03/2007 

30/08/2006 13/11/2008 

Popocatepetl  

  

Mexico 

 

06/04/2006 22/02/2006 

23/05/2006 27/08/2005 

11/04/2007 08/03/2007 

01/12/2007 09/05/2009 

22/02/2008 25/02/2005 

16/11/2008 11/03/2008 

Rabaul  

  

Papua New Guinea 

 

07/10/2006 24/06/2007 

04/08/2007 01/02/2006 

22/08/2007 22/03/2007 

Santa Ana  El Salvador 01/10/2005 13/11/2008 

Santa Maria  Guatemala 26/10/2005 22/02/2006 

SHV  

  

Montserrat 

 

20/05/2006 10/04/2009 

08/01/2007 12/03/2008 

29/07/2008 05/06/2007 

11/02/2010 02/04/2007 

Soputan  

  

Indonesia 

 

19/04/2005 07/02/2005 

15/12/2006 10/05/2009 

15/12/2006 17/11/2008 

06/06/2008 20/12/2006 

Tinakula  

  

Solomon Islands 

 

12/02/2006 03/02/2009 

22/09/2009 15/06/2009 

17/01/2010 05/10/2005 

Tungurahua  

  

Ecuador  

 

14/07/2006 16/06/2005 

16/08/2006 31/12/2009 

10/01/2008 04/05/2009 

06/02/2008 11/02/2007 

Turrialba  

 

Costa Rica  

 

06/01/2010 06/09/2005 

12/01/2012 04/08/2005 
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Table 3: Average SO2 column amounts (t) for volcanic and control events. 

Sample 
Average SO2 mass 

(tons) 

Volcanic 

M1 (4°) 2680 

M2 (2°) 1150 

M3 (Corrected) 680 

Control 

M1 (4°) 450 

M2 (2°) 170 

M3 (Corrected) 90 
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Table 4: Misclassified alerts identified in the initial logistic regression model 

Sample 

(S) 
Name Date 

Plume SO2  

Mass (tons) 

Predicted  

Classification 

Original  

Classification 
Error Generation 

C 1 Ambrym 31/03/2005 1040 Volcanic Control Persistent degassing 

C 8 Bagana 26/11/2007 340 Volcanic Control Persistent degassing 

C 10 Bagana 23/10/2006 ? Volcanic Control Missing data 

C 24 Karthala 07/07/2005 ? Volcanic Control Missing data 

C 29 Manam 15/07/2005 350 Volcanic Control Localised noise 

C 32 Manam 07/08/2005 450 Volcanic Control Small Eruption 

C 54 Popocatepetl 08/03/2007 600 Volcanic Control Ongoing eruption 

C 57 Popocatepetl 11/03/2008 340 Volcanic Control Ongoing eruption 

V 3 Anatahan 06/01/2005 230 Control Volcanic Diffuse plume 

V 5 Anatahan 17/03/2006 120 Control Volcanic Drifting plume 

V 13 Bagana 14/07/2007 320 Control Volcanic Diffuse plume 

V 17 Bezymianny 10/05/2007 140 Control Volcanic Drifting plume 

V 19 Chaiten 02/05/2008 250 Control Volcanic High noise 

V 20 Dukono 25/05/2008 300 Control Volcanic Diffuse plume 

V 21 Dukono 25/07/2008 270 Control Volcanic Drifting plume 

V 23 Ibu 04/04/2008 210 Control Volcanic Diffuse plume 

V 24 Karthala 16/04/2005 110 Control Volcanic Drifting plume 

V 28 Kelut 18/05/2006 170 Control Volcanic Diffuse plume 

V 32 Manam 29/12/2007 80 Control Volcanic Diffuse plume 

V 33 Manam 11/05/2008 190 Control Volcanic Diffuse plume 

V 34 Mayon 17/08/2005 120 Control Volcanic Drifting plume 

V 43 Nyiragongo 10/10/2005 230 Control Volcanic Drifting plume 

V 48 Pagan 11/01/2007 160 Control Volcanic Diffuse plume 

V 53 Popocatepetl 23/05/2006 250 Control Volcanic Interfering signal 

V 64 SHV 08/01/2007 240 Control Volcanic Drifting plume 

V 67 Soputan 19/04/2005 169.9933 Control Volcanic Drifting plume 
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Table 5: Locations and dates of volcanic and control ‘eruptions’ for validation dataset. 

Volcano Location 
Eruption 

Date 

Correct Classification 

(Y/N) 
Control 

Date 

Correct Classification 

(Y/N) 

Original Optimised Original Optimised 

Ambrym Vanuatu 01/05/2007 N Y 12/12/2008 N Y 

Anatahan 
Mariana 

Islands 
29/05/2006 Y Y 06/09/2005 Y Y 

Cleveland 

 

Aleutian 

Islands 

06/02/2006 Y Y 17/05/2009 Y Y 

23/05/2006 Y Y 06/01/2008 Y Y 

28/10/2006 N N 28/02/2006 N N 

Colima Mexico 24/04/2005 N N 04/05/2009 Y Y 

Lascar Chile 04/05/2005 N N 11/02/2007 Y Y 

Lopevi Vanuatu 21/04/2007 Y Y 13/12/2006 Y Y 

Okmok 
Aleutian 

Islands 
12/07/2008 Y Y 01/07/2008 Y Y 

Sierra Negra 
Galápagos 

Islands 
22/10/2005 Y Y 04/08/2005 Y Y 

Soputan Indonesia 25/10/2007 Y Y 02/07/2008 Y Y 

Soufriere Hills Montserrat 20/05/2006 N N 24/08/2006 Y Y 

 

 

 5 

 

Table 6: Validation statistics generated through the assessment of the test data with three methods. 

Validation Statistic 
Original 

model 

Optimised 

model 

Optimised 

Threshold 

Model 

Overall accuracy (%) 75 79.2 95 

Volcanic Precision 0.8 1 1 

Volcanic Recall 0.667 0.583 0.889 

Control Precision 0.714 0.706 0.917 

Control Recall 0.833 1 1 

ROC 0.813 0.84 0.979 

Threshold (P) 0.432 0.620 0.660 
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Figure 1: Analysis regions for Method 1 (M1) and Method 2 (M2) for an SO2 plume detected by OMI at Piton de la Fournaise, 

Réunion on the 24th February 2010. 
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Figure 2: Box and whisker plots displaying the spread and distribution of volcanic and control data with lines indicating upper and 

lower quartiles of the data and the remainder represented by the box region. Additional data points indicate the individual missed 

alerts in the volcanic data and false alerts in the control data detailed in Table 4. 
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Figure 3: Result of the application of a threshold SO2 loading to the volcanic dataset on; a. accurately classified events and b. the 

precision (no false alerts) and recall (no missed alerts) values for both the volcanic and control datasets. 
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Figure 4: The effect of proportional removal of lowest data points on minimum incorporated SO2 mass from the volcanic dataset 

and the ROC (receiver operator characteristic) statistic of each model where ROC = 1 implies all events correctly classified. 
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